- Title
- Using hydrological connectivity to detect transitions and degradation thresholds: applications to dryland systems
- Creator
- Saco, Patricia M.; Rodríguez, José F.; Moreno-de las Heras, Mariano; Keesstra, Saskia; Azadi, Samira; Sandi, Steven; Baartman, Jantiene; Rodrigo-Comino, Jesús; Rossi, María Julieta
- Relation
- ARC.FT140100610 http://purl.org/au-research/grants/arc/FT140100610 | ARC|DP140104178 http://purl.org/au-research/grants/arc/DP140104178
- Relation
- Catena Vol. 186, Issue March 2020, no. 104354
- Publisher Link
- http://dx.doi.org/10.1016/j.catena.2019.104354
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2020
- Description
- In arid and semi-arid ecosystems, shortage of water can trigger changes in landscapes' structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated with runoff and sediment production, since human and/or natural disturbances alter surface water availability and pathways increasing/decreasing connectivity. In this paper, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of coevolution of system structures and function, and how they may drive threshold behaviour leading to desertification and degradation. We first analyse the case of semi-arid rangelands, where feedbacks between the decline in vegetation density and landscape erosion reinforces degradation processes driven by changes in connectivity until a threshold is crossed above which the return to a functional system is unlikely. We then focus on semi-arid wetlands, where decreases in water volumes promote terrestrial vegetation encroachment that changes drainage conditions and connectivity, potentially reinforcing redistribution of flow paths to other wetland areas. The analysis of dryland wetlands is based on a novel hydrologic connectivity index derived using inundation requirements for wetland vegetation associations. The examples presented highlight the need to incorporate a coevolutionary framework for the analysis of changing connectivity patterns and the emergence of thresholds in arid and semi-arid systems.
- Subject
- semi-arid environments; landscape evolution; hydrological connectivity; geoecology; land degradation; SDG 15; Sustainable Development Goals
- Identifier
- http://hdl.handle.net/1959.13/1439816
- Identifier
- uon:41042
- Identifier
- ISSN:0341-8162
- Rights
- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
- Language
- eng
- Full Text
- Reviewed
- Hits: 3010
- Visitors: 3045
- Downloads: 105
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Author final version | 2 MB | Adobe Acrobat PDF | View Details Download |